
cheryl
Administrator
Staff member
Human waste could solve aviation's biggest problem - Inverse
Rotten food scraps and vats of sewage typically do not make the cut when it comes to the list of what makes a glamorous, jet-setting lifestyle. But researchers say that transforming these otherwise discarded “wet waste” materials into biofuel could be the future of environmentally friendly flying.
In a study published Monday in the journal Proceedings of the National Academy of Sciences, a team of researchers led by the U.S. National Renewable Energy Laboratory describe how to convert organic waste into paraffin, a combustible hydrocarbon used in aviation fuel. Ultimately, their new formulation may pave the way for a greener jet fuel and a more eco-friendly aviation industry that doesn’t rely on developing an electric jet.
What’s new — The new approach presented in this paper is a break from traditional production methods for biofuels like ethanol or biodiesel. It uses a chemical process to efficiently remove excess water from so-called “wet waste,” which can include food scraps, and then isolate the kinds of combustible materials needed to make fuel. The scientists report in the paper that such a waste-derived fuel could cut aviation emission levels by 165 percent.
Rotten food scraps and vats of sewage typically do not make the cut when it comes to the list of what makes a glamorous, jet-setting lifestyle. But researchers say that transforming these otherwise discarded “wet waste” materials into biofuel could be the future of environmentally friendly flying.
In a study published Monday in the journal Proceedings of the National Academy of Sciences, a team of researchers led by the U.S. National Renewable Energy Laboratory describe how to convert organic waste into paraffin, a combustible hydrocarbon used in aviation fuel. Ultimately, their new formulation may pave the way for a greener jet fuel and a more eco-friendly aviation industry that doesn’t rely on developing an electric jet.
What’s new — The new approach presented in this paper is a break from traditional production methods for biofuels like ethanol or biodiesel. It uses a chemical process to efficiently remove excess water from so-called “wet waste,” which can include food scraps, and then isolate the kinds of combustible materials needed to make fuel. The scientists report in the paper that such a waste-derived fuel could cut aviation emission levels by 165 percent.