cheryl
Administrator
Staff member
An Alzheimer’s vaccine might be possible - Big Think
The cause of Alzheimer's is still not fully understood, but we might be able to vaccinate against it anyway.
Of the 2000 potential Alzheimer’s disease (AD) treatments explored over the last 30 years, fewer than ten have been shown to slow the development of symptoms, and none have been shown to cure or even stop the disease. However, a team of UK and German scientists has uncovered a novel approach that may not just stop AD but also prevent the disease from occurring in the first place.
The amyloid hypothesis
The cause of AD is unknown, but the amyloid hypothesis is the most widely accepted explanation. It posits that the disease develops as a type of protein (amyloid-beta) clumps together, forming aggregates in the brain. These aggregates cause neuron death, which ultimately results in cognitive decline. (It is believed that aggregation of the tau protein plays a role, as well.)
Three types of aggregates are considered when developing potential treatments. Two of the aggregates are soluble — small clumps of either shortamyloid proteins or longamyloid proteins that float around in the fluid that fills the spaces between neurons. Over time, these soluble aggregates become so large that they form the third type of aggregate: insoluble plaques composed of both short and long amyloid proteins that stick to the surface of neurons. All three have been implicated in neuron death and dysfunction. However, it is the plaques, a hallmark found in all AD patients, that scientists believed were the main cause of the disease.
The cause of Alzheimer's is still not fully understood, but we might be able to vaccinate against it anyway.
Of the 2000 potential Alzheimer’s disease (AD) treatments explored over the last 30 years, fewer than ten have been shown to slow the development of symptoms, and none have been shown to cure or even stop the disease. However, a team of UK and German scientists has uncovered a novel approach that may not just stop AD but also prevent the disease from occurring in the first place.
The amyloid hypothesis
The cause of AD is unknown, but the amyloid hypothesis is the most widely accepted explanation. It posits that the disease develops as a type of protein (amyloid-beta) clumps together, forming aggregates in the brain. These aggregates cause neuron death, which ultimately results in cognitive decline. (It is believed that aggregation of the tau protein plays a role, as well.)
Three types of aggregates are considered when developing potential treatments. Two of the aggregates are soluble — small clumps of either shortamyloid proteins or longamyloid proteins that float around in the fluid that fills the spaces between neurons. Over time, these soluble aggregates become so large that they form the third type of aggregate: insoluble plaques composed of both short and long amyloid proteins that stick to the surface of neurons. All three have been implicated in neuron death and dysfunction. However, it is the plaques, a hallmark found in all AD patients, that scientists believed were the main cause of the disease.